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Abstract 
This paper describes the design and features of a visualization tool, called ParaViewi, a tool for 
scientists to visualize and analysis extremely large data sets.  The tool provides a graphical user 
interface for the creation and dynamic execution of visualization tasks. ParaView transparently 
supports the visualization and rendering of large data sets by executing these programs in parallel 
on shared or distributed memory machines. ParaView supports hardware-accelerated parallel 
rendering and achieves interactive rendering performance via level-of-detail techniques. The 
design balances and integrates a number of diverse requirements including the ability to handle 
large data, ease of use and extensibility by developers. This paper describes the requirements that 
guided the design, identifies their importance to scientific users, and discusses key design 
decision and tradeoffs.  

Introduction   
Sensors and scientific simulations are generating unprecedented volumes of data making 
visualization with traditional visualization solutions difficult or even impossible. To address the 
simulation scientists’ visualization needs we spoke with simulation scientists and gathered a set 
of requirements. The high-level requirements that guided the design of ParaView are support for 
an efficient workflow and support for the visualization and analysis of extremely large datasets. 
The challenge was to create a design and implementation that met both these complex 
requirements and balanced conflicts between them.  

Workflow requirements 
Visualization is one task of many for simulation scientists. Other simulation tasks include: 
theoretical work, programming, problem setup, analysis and data management. Therefore, the 
first workflow requirement is tool ease of use. That is, how long it takes to create results and what 
visualization domain knowledge is required to run the tool will determine whether the tool is used 
and how often. A coarse approximation of the simulation scientists’ visualization workflow 
includes two modes: an exploratory mode, in which an interactive graphical user interface(GUI)-
based tool is used to explore a dataset; and a batch mode, in which a scripting or programming 
language is used to write and execute a program that creates an animation. The second workflow 
requirement is support for both modes. This coarse approximation can be refined further 
identifying how data is input (during the simulation run or after processing of the simulation is 
complete) and what type of interface is used (GUI, scripting, VR)1. Additional workflow 
requirements include tool portability, accessibility and extensibility. Portability is required 
because of the diverse collection of resources available to scientists to run their simulations and 
visualizations. Tool accessibility is the ability to quickly gain access to, setup, possibly modify 
and run the tool. Open-source projects are more accessible since the package is typically available 
on the Internet and any necessary tool modifications can be done quickly because the source is 

                                                        
i ParaView is an open-source package and can be downloaded at www.paraview.org. 



available. We define extensibility as the ability to easily add new functions and graphical 
interfaces to the tool.  

Large data visualization requirements 
The ability to handle large data is also a critical requirement. We define large data as data that 
exceeds the resource limits (i.e. the elements of the storage hierarchy – memory, disk, tape) of a 
single machine. The first aspect of the large data handing requirement is a functional one; can the 
data be visualized at all? Techniques such as data streaming (i.e. processing the data 
incrementally) and parallelism can be used to process large data sets. Workflow requirements, 
such as portability, mandate that the tool execute on both shared and distributed-memory parallel 
machines. The second aspect of the large data handling requirements is performance; can the data 
be processed quickly? Techniques such as multi-resolution representations and parallelism can be 
used to improve both visualization and rendering performance. 

Related Work 
There are a number of visualization packages available for use by scientists. Each of these 
packages meets a subset of the identified requirements.  In this section, we will discuss a few of 
these packages, specifically AVS2, OpenDX3, SCIRun4 and Ensight5 identifying their strengths 
and describing which requirements they meet. ParaView was designed to meet all the identified 
workflow and large data visualization requirements.  

Workflow requirements 
Ensight and ParaView use a graphical user interface to execute visualization tasks. AVS, 
OpenDX and SCIRun use dataflow program graph editor to compose programs. Dataflow 
program graph editors were thought to provide a good tradeoff between the needs of visualization 
developers and end-users: for developers, they provide the ability to create complex program 
graphs and for end-users they provide a graphical interface to create these graphs. In practice, 
learning visual programming with dataflow graphs is considered by many scientists a significant 
barrier to creating visualization tasks and thus they consider GUI-based interfaces easier to use. 
OpenDX, SCIRun and ParaView are all open-source packages making them easily accessible and 
extensible. These packages offer interactive and batch interaction modes. SCIRun provides 
support for computational steering – the ability to interact with and visualize data from a running 
simulation.  In contrast to these other packages, ParaView uses a general purpose scripting 
language, Tcl, for batch commands. Advantages of using a general purpose scripting language 
include the availability of general purpose computing functionality, robust documentation and 
support for the scripting language that is independent of the visualization tool. 

Large data visualization requirements 
All of these packages are portable to most architectures when run on a single machine. 
Differences arise on their portability to parallel architectures. AVS, OpenDX and SCIRun all 
support parallel execution on shared memory machines. They also all rely on a centralized 
executive to allocate memory and execute programs. This reliance makes it difficult to port these 
packages to distributed memory machines. Ensight uses a client/server architecture, the client 
renders geometry and the server executes visualization and analysis tasks. Ensight currently 
provides a shared-memory implementations of both the client and server. Ensight also has a 
distributed-memory implementation of the server. ParaView is portable to both shared and 
distributed-memory machines. ParaView is the only listed package that can incrementally process 
data.



The ability to process datasets larger than the available computing resources is a key 
consideration when processing extremely large datasets since resource availability changes over 
timeii.  

Design  
ParaView is designed as a layered architecture. The foundation is the visualization toolkit 
(VTK).6,7 It provides the foundation of ParaView: data representations, algorithms and a 
mechanism to connect these representations and algorithms together to form a working program. 
The second layer is the parallel extensions to the visualization toolkit. The parallel VTK layer, 
extended VTK to support streaming of all data types and parallel execution on shared and 
distributed memory machines.iii The third layer is ParaView itself. ParaView provides a graphical 
user interface and transparently supports the visualization and rendering of large data sets via 
hardware acceleration, parallelism and level-of-detail techniques. Each layer meets a subset of the 
requirements and adds additional functionality to the layer below.  

Visualization Toolkit 
The Visualization Toolkit is the foundation of the ParaView architecture. VTK provides data 
representations for a variety of grid types including structured (uniform and non-uniform 
rectilinear grids as well as curvilinear grids), unstructured, polygonal and image data. Examples 
of these grid types are shown in Figure 1. VTK provides hundreds of visualization and rendering 
algorithms that process these data types including isosurfacing, cutting/clipping, glyphing and 
streamlines. VTK also provides algorithms for polygon and volume rendering and a keyboard and 
mouse-based interaction model. Algorithms are organized into dataflow program graphs and a 
demand-driven dataflow execution model is used to run these programs. Core functionality in 
VTK is written in C++. To use the toolkit, VTK offers both a C++ library interface and set of 
scripting interfaces including Java, Python and Tcl interfaces. The library interface provides the 
best performance. The scripting interfaces offer the advantage of rapid prototyping of programs. 
Once a day and continuously (i.e. whenever a developer commits a change) tests are run using an 
open-source testing framework, called Dart, which improves the toolkit’s reliability. The toolkit 
provides the basis for ParaView’s portability, accessibility, full range of features and support for 
interactive and scripting usage modes. More details on VTK can be found in this book in a related 
chapter on the toolkit. 

Parallel and Distributed Visualization Toolkit  
Additional functionality was added to VTK to support data streaming and parallel computation.8 
Both depend upon the ability to break a dataset into smaller pieces. Data streaming incrementally 
processes these smaller pieces one at a time. Thus, a user can process an extremely large dataset 
with computing resources that cannot store the entire dataset (either in memory or on disk). Data 
streaming requires that all VTK data types are separable into pieces and the toolkit algorithms 
correctly process these pieces. To process pieces in a dataflow pipeline, a mapping must be 
defined that specifies for each algorithm what portion of the input data is required to generate a 
portion of the output data. With this information, algorithms can generate only a portion of their 
output for a given input. Each algorithm must ensure program results are invariant, regardless of 
how the dataset is broken into pieces. These requirements are met by creating a partitioning of 
both structured and unstructured grid types and by providing ghost levels which are points/cells 
that are shared between processes and are used by algorithms which require neighborhood 
                                                        
ii ParaView’s data streaming feature is available in batch mode. 
iii These extensions are currently part of the toolkit but were added after the original design of the toolkit 
was complete. 



information. A piece of a structured grid is defined by its extent which describes a contiguous 
range of elements in each dimension (i.e. in 3D, a sub-block of a complete block).  VTK’s 
unstructured grid types use an “element of a collection” scheme (i.e. piece M of N). A procedure 
for converting between grid types was also defined in which each structured extent piece maps 
one-to-one to an unstructured piece. Additional policies take care of handling boundary 
conditions and creating ghost levels for all grid types.  This data streaming ability supports data 
parallelism. Instead of processing pieces one of the time, each processor processes a different 
piece in parallel. Examples of dataset partitioning and the creation of ghost levels are shown in 
Figure 2. Figure 2 shows a CTH non-uniform rectilinear grid data set that was processed in 8 
pieces.  The original data set contained cell centered attributes.  Volume fraction attributes for 
both the projectile and plate were first interpolated to vertices before an isosurface filter was used 
to extract the material surfaces.  Both the vertex interpolation and normal generation require 
ghost cells to ensure partition invariant results. 
 

 
Figure 1: The figure shows the different types of data sets that VTK and ParaView can handle.  The 
upper left dataset is a uniform rectilinear volume of an iron potential function.  The Upper right 
image shows an isosurface of a non-uniform rectilinear structured grid.  The lower left image shows 
a curvilinear structured grid data set of airflow around a blunt fin.  The lower right image shows an 
unstructured grid data set from a blow molding simulation. 

Parallel communication and control classes encapsulate details of process initialization and 
communication libraries such as a shared-memory implementation or MPI. The streaming and 
parallel computing features can be accessed both thru a C++ library interface and via a set of 
scripting interfaces. These feature extensions provide the basis for ParaView’s large data 
functionality and performance requirements.  
 



 
 

Figure 2: The image on the left was generated 
with a CTH data set partitioned into eight pieces.  Each piece was assigned a different color.  The 
image on the right shows only one partition with six extra ghost levels.  The cells are colored by ghost 
level. In practice, usually only one ghost level is necessary.  

ParaView 
ParaView provides a graphical user interface for the interactive exploration of large data sets. It 
builds this functionality on parallel and distributed VTK. An overview of the tool from a user 
perspective is presented first, followed by a technical description of how the tool’s functionality 
is achieved.  

Overview 
A sample ParaView session is shown in Figure 3. There are several regions to the user interface 
including the Menu Bar along the top of the application, the Toolbar just below the Menu Bar, the 
Left Panel on the left side and the Display Area on the right side.  Each of these areas is described 
in more detail below: 

• The Menu Bar: The top menu bar provides menu buttons for loading and saving data, 
creating sources and filters, viewing other windows, displaying help, and other standard 
functionality.  

• Toolbar: The Toolbar contains buttons for resetting the camera, switching between 2D 
and 3D interaction modes, and changing the center of rotation. In addition, the Toolbar 
contains shortcut icons to instantiate some commonly used filters. 

• Left Panel: The top portion of this panel contains the selection or navigation window. 
The selection window provides a list of instantiated sources and filters. The navigation 
window provides a dataflow program graph representation of the user’s task. The area 
below the selection/navigation window is where the properties of sources and filters are 
set, which we refer to as a property sheet. Property sheets contain module settings such as 
the current isosurface values computed by the isosurface module. 

• Display Area: The Display Area is where the 3D representation of the scene is rendered. 
Mouse and keyboard interaction are provided in this area. 



 
Figure 3: ParaView 

To add new filters the user selects a source or filter from the Source or Filter menu on the Menu 
Bar. Sources include various types of readers or computer-generated sources. A sample of the 
possible filters includes:  

• Contours and isosurfaces can be extracted from all data types using scalars or vector 
components. The results can be colored by any other variable or processed further. When 
possible, structured data contours/isosurfaces are extracted with fast and efficient 
algorithms that make use of the structured data layout. 

• Vectors fields can be inspected by applying glyphs (currently arrows, cones and spheres) 
to the points in a dataset. The glyphs can be scaled by scalars, vector component or vector 
magnitude and can be oriented using a vector field. 

• A sub-region of a dataset can be extracted by cutting or clipping with an arbitrary plane, 
specifying a threshold criteria to exclude cells and/or specifying a volume of interest (for 
structured data types only). 

• Streamlines can be generated using constant step or adaptive integrators.iv  The results 
can be displayed as points, lines, tubes and ribbons and can be processed by a multitude 
of filters. 

• The points in a dataset can be warped/displaced with scalars or with vectors. 
• With the array calculator, new variables can be computed using existing point or cell 

field arrays. Many scalar and vector operations are supported. 

                                                        
iv A parallel implementation of streamlines is not currently available, this feature is under development. 



• Data can be probed on a point or along a line. The results are displayed either graphically 
or as text and can be exported for further analysis. 

ParaView provides many other data sources and filters by default including edge extraction, 
surface extraction, reflection, decimation, extrusion and smoothing. Any VTK source or filter can 
be added to ParaView by providing a simple XML description for its user interface for its 
property sheet.  

The Source and Filter menu are dynamically updated to contain a list of sources/filters that can 
input the output of the currently selected module. The selected module is either the last module 
created, or the one most recently selected from the Selection/Navigation Window. Once a module 
is chosen, a new instantiation of the module is created, connected to the selected module and the 
module’s property sheet is displayed. In this manner, a dataflow program graph is created. In 
order to manipulate or view the properties of a module, the module is selected and its property 
sheet is shown and the user can view or edit the listed values. 

Meeting the workflow requirements 
ParaView simplifies its use by minimizing the knowledge of dataflow programming required by 
users to use the tool. Specifically, a user can specify simple tasks, for example, creating a source 
and applying simple filters, without needing to be aware of dataflow programming. This is 
because ParaView’s default behavior is to add new modules to the last module created. When the 
user wants to change this behavior, for example to apply another filter to the source data, they can 
use the Selection Window to reset the location where the new module will be added. ParaView 
also simplifies the choice of modules by only listing modules which accept the correct data type 
for insertion. For advanced users who wish to create complex program graphs, the program graph 
is available for manipulation in Navigation window. ParaView is designed so that visualized 
results dominate the GUI real-estate and the manipulation of program graphs is relegated to a 
much smaller area. This allows scientists to focus on their visual analysis and not on visual 
programming which is typically of secondary importance to them. 
 
When modules are instantiated in ParaView they create visual output in the display area 
providing immediate visual feedback to the user about their data and the effect of the applied 
module. For example, as shown in Figure 3, when the user creates a two-dimensional source, in 
this case, a fractal source, ParaView automatically creates a color mapping of the data. This 
feature improves ease of use because it provides default settings, freeing the user from this task. 
This feature does have a downside; it hampers the ability to stream data since every module 
instantiation would cause ParaView to stream visual results. For now, we have chosen to only 
permit data streaming in batch mode. Solutions to this problem include: offering the option of 
turning on and off interactive data streaming as well as offering the option of turning on and off 
the immediate feedback feature. 
 
Users can change the parameters of some modules directly by interacting with the 3D view 
shown in the Display Area using 3D manipulators. For example, the user can manipulate the seed 
line of a streamtrace filter by clicking on a control point and dragging the line to the new location. 
There are also 3D manipulators for probing a dataset with a point or line and cutting or clipping a 
dataset with a sphere or plane. 3D manipulators improve ease of use by allowing users to quickly 
apply visualization modules to datasets by letting them interactively use the mouse to select 
location parameters instead of setting the parameters numerically in the user interface. When the 
manipulator is adjusted interactively in the 3D view, the numerical values of the location 
parameters are updated in the user interface and the user can then fine tune these values.  



 
ParaView is portable to most architectures. To achieve this, only packages that work across many 
platforms were used in developing ParaView. For example, to achieve a portable user interface, 
Tk, was chosen. Tk, is the graphical user interface companion to the Tcl scripting language. The 
application framework at the core of ParaView is a unique blend of Tcl/Tk and C++. Tk is used 
as the widget set but C++ objects, which provide higher-level UI components, are created to 
encapsulate the widgets. Like VTK objects, these C++ UI objects are automatically wrapped in 
Tcl.  
 
ParaView’s user interface can be modified and extended both statically with XML configuration 
files and dynamically, at runtime, using the Tcl scripting interface. All ParaView modules and 
their corresponding user interface are initialized by parsing XML based configuration files. These 
files contain the input/output types of the modules, an icon name to be displayed on the toolbar, a 
list of widgets to be displayed on the module’s parameter page, the corresponding module 
parameters and in case of reader modules information about the file type. For example, Figure 4 
present the XML description listed in ParaView default configuration file and corresponding user 
interface for isoline/isosurface module. 
 
<Module name="Contour" class="VTKPVContour" module_type="Filter" root_name="Contour"  
               button_image="PVContourButton" output="VTKPolyData" input="VTKDataSet"> 
  <Filter class="VTKPVContourFilter"/> 
 
 <InputMenu id="im" label="Input" trace_name="Input" input_name="PVInput”   

input_type="VTKDataSet"/> 
  <ArrayMenu id="am" input_name="Input" attribute_type="Scalars" 
              label="Scalars" input_menu="im" number_of_components="1"/> 
  <ScalarRangeLabel array_menu="am"/> 
  <ContourEntry label="Contour Values" trace_name="Contour Values"/> 
  <LabeledToggle label="Compute Normals" variable="ComputeNormals"/>  
  <LabeledToggle label="Compute Gradients" variable="ComputeGradients"/> 
  <LabeledToggle label="Compute Scalars" variable="ComputeScalars"/> 
</Module> 

 

Figure 4: XML description for the isoline/isosurface module in ParaView and corresponding user 
interface generated by the XML 

Since all ParaView widgets have corresponding Tcl representations, the GUI can be modified at 
runtime by loading scripts or typing commands at a command console. This allows the user to, 
for example, add new widgets, create dialog windows or load additional libraries at runtime. 
These features can be used to customize what modules are loaded and how they are presented to 
the user. A visualization developer can edit the ParaView GUI configuration file and write 
custom scripts to customize ParaView for use by specific application users. For example, for the 
climate modeling community, a configuration file could be written to add a suite of climate 



analysis modules and customize the existing modules such as contouring to meet community 
conventions. ParaView meets the accessibility requirement because it is available in open-source 
form. 
 
Recall that, a coarse approximation of the simulation scientists’ workflow includes two modes, an 
interactive mode, in which an interactive GUI-based tool is used to explore a dataset, and a batch 
mode, in which a program is executed to create an animation. ParaView supports both these 
modes. ParaView’s interactive mode was detailed in the overview section. Every interaction with 
the ParaView GUI can be saved in a session file since every interaction has a corresponding Tcl 
command. The session file can be reloaded to reproduce the session. Furthermore, since the 
session file is a Tcl script, it can be edited/modified and then reloaded to obtain different results. 
In addition to dataset exploration, the interactive mode is also used to create to programs to run in 
batch. ParaView also supports saving the current program graph as a VTK script. A series of 
queries allow the user to customize the script. A session script differs from a VTK script because 
a session script saves every ParaView interaction (i.e. every interaction used to create a program 
graph) and a VTK script saves only a program graph.   

Meeting the large data visualization requirements 
ParaView supports large data visualization via techniques that include parallel processing, level-
of-detail rendering and data streaming.  

Parallelism and data streaming 
ParaView supports parallelism, either using shared-memory processes or distributed-memory 
processes via MPI. When ParaView is run in parallel, data is automatically read, processed and, if 
necessary, rendered in a data parallel manner. ParaView’s parallel software architecture includes 
three types of processes, a client process that runs the graphical user interface and two types of 
server processes: root and slave processes.  The client process communicates with the root server 
process by broadcasting commands. The root server process receives these commands and re-
broadcasts them to all slave servers. A command is a script; currently, a Tcl script is used. In the 
future, user may be able to select the scripting language to use, for example, Python or java. All 
servers run an interpreter and use it to execute received commands. This communication 
mechanism is used to create a copy of the same program graph on each process. The program 
graphs on the servers manipulate pieces of the full dataset for data parallel processing and the 
program graph on the client is used to store program state such as parameter settings for modules. 
ParaView’s user interface elements update the client’s program graph and the changes are sent as 
scripts to the root and slave servers. For example, when a user creates a filter module, such as an 
isosurface, a script is created that instantiates, sets parameters, and appends the isosurface module 
to a program graph. This script is then communicated to and interpreted by both the client and 
server processes. All processes use the same naming convention and thus one script works for all 
process’s program graphs. All program graphs are initialized with a rendering module.   
 
To implement parallel algorithms, communication between processes is handled internally by the 
modules in the program graphs. For example, all rendering modules communicate to implement a 
parallel rendering algorithm. Although the client can be considered a centralized executive, 
ParaView’s design supports independent process decisions and actions as much as possible. For 
example, the decision to allocate memory occurs locally. Also inter-process communication is 
limited to program instantiation/execution commands and parallel algorithms.  
 
ParaView supports data streaming in batch mode. When the user writes a batch script, an option 
prompts the user as to whether they would like to stream their data and what memory limit they 



are bounded by. Streaming along with data parallelism are effective techniques for processing 
large datasets and effectively fulfill ParaView’s large data visualization requirement. We have 
used these techniques to efficiently and effectively isosurface and color a collection of datasets 
that ranged in size from 10’s of gigabytes to approximately a petabyte in size8. 

Level-of-detail and parallel rendering 
ParaView’s rendering module supports both level of detail and parallel rendering techniques9 to 
facilitate the rendering of very large datasets interactively. Interactive rendering of large datasets 
is an extremely challenging problem and therefore we applied a number of techniques to achieve 
good performance.  
 
Level-of-detail techniques increase rendering performance at the expense of image quality. Two 
different LOD techniques are used in ParaView: geometric LOD and rendered image LOD. The 
geometric LOD technique creates a reduced geometric resolution model. In general, models with 
less geometric elements render faster than with more elements. When the user is interacting with 
model (i.e. rotating, translating, zooming) a reduced resolution model is used in order to render 
quickly. When the interaction is complete, the full-resolution model is rendered. Figure 5 shows 
an example of the full and reduced resolution model. VTK’s quadric clustering algorithm is used 
to simplify surfaces. This algorithm preserves data attributes, so the LOD models have the same 
visual appearance of the original data.  Timing results for the decimation algorithm are given in 
Table 1. Decimation can introduce significant visual artifacts in the rendered image.  However, 
we have concluded that these artifacts are acceptable during interactive rendering. Decimation 
can also work well with the geometry redistribution technique discussed later in this section. The 
smaller decimated models can easily be collected and rendered locally. 
 

 
Figure 5: The full-resolution surface (left) has 821,495 triangles and renders in intermediate mode in 
0.93 seconds on a GeForce2 GTS, and the decimated surface (right) has 35,400 triangles and renders 
in 0.04 seconds.  

 Time To Decimate 
1 Processor 6.25 Seconds 
2 Processors 3.515 Seconds 
4 Processors 1.813 Seconds 

Table 1: The full-resolution surface has 821,495 triangles, and the decimated surface had 
approximately 35,400 triangles.   

The rendered image LOD technique involves rendering to a small image and using pixel 
replication to magnify the image for final display.  It is essentially lossy compression of the 



image that has no compression cost and minimal decompression cost.  Although the resulting 
visual artifacts are noticeable, they do not significantly impair interaction with the data set.  This 
technique reduces rendering times through all steps listed below.  Initial rendering times can be 
faster because fill areas are smaller.  The time to read and composite image buffers is reduced 
because it is directly proportional to the area of the rendered image.  
 
Using data parallelism in the renderer is also critical for high performance. The renderer is always 
in one of two states: an interactive state when the user is interacting with the GUI and a still state 
when the user is not. The steps of the rendering algorithm are described below. Note that 
ParaView’s geometry and image data can be either serial or parallel data and this may change 
during execution. The algorithm below is applied to each geometric object to be rendered: 
  
1. If (Rendering state is interactive) then apply geometric and image LOD algorithm –  

a. The geometric LOD algorithm is applied when an estimate of the time to render the 
object (based on the number of points in the object) exceeds a user modifiable 
threshold. When the threshold is exceeded rendering occurs with a reduced resolution 
version of the object. If a reduced resolution version does not exist one is created.  

b. The image LOD algorithm is applied when the time to render the last frame exceeds a 
user modifiable threshold. Using the previous frame time as an estimate a new image 
size is calculated, in order to reduce rendering time to below the threshold.  

 
2. If (Geometry data is parallel) then apply parallel geometry load redistribution 

algorithm – The result of the LOD algorithm is geometry data. If there is parallel geometry 
data, this data can be redistributed from its current location on the processes to a subset of the 
processes. For example, if the geometry is small enough (i.e. after it is reduced by Step 1a) it 
can be more efficient to collect and render the geometry on a single process.  This avoids the 
cost of parallel image compositing (i.e. Step 4). In this future, this step will also be used to 
balance geometric load across processes for more efficient performance. 

 
3. Rendering - The result of the redistribution algorithm is geometry data. A rendering 

operation then renders this geometry to create an image and depth buffer result of the image 
size set in Step 1b. Rendering can be serial or parallel, hardware or software-based, and occur 
either onscreen or offscreen. 

 
4. If (Image data is parallel) than apply parallel image compositing - If there is parallel 

imagery, then this image data is composited together using the depth buffer to resolve 
conflicts to create a final image. ParaView currently supports a binary tree compositing with 
an option of using run-length encoding to losslessly compress images for speed10. With large 
window sizes and many processes, this communication time can be the major factor limiting 
rendering performance. Compositing transmission time grows linearly with render window 
area and scales logarithmically with the number of processes. This is why both Step 1a and 
1b offers methods (collecting geometry to a single process and compositing using smaller 
images) to either skip or speedup this compositing step.    

 
Notice that different paths through these steps are possible. For example, a reduced level-of-detail 
model can be rendered locally when the renderer is in the interactive state and the full resolution 
version of the same model can be rendered in a parallel when the renderer is in the still state. 
Having the ability to render at different resolutions and speeds, allows the user to interactively 
focus on an area of interest and then study the details of a full-resolution image and meets the 
large data rendering requirement. 



Results 
This section presents visualization results generated by ParaView for several application areas.   
 
Figure 6 shows isosurfaces of the visible woman data set.  The 512x512x1734 900 MB dataset is 
composed of seven sections. Each section is a uniform rectilinear grid generated by a CT scan.  
Two isosurfaces were extracted, one for bone and one for skin.  The skin isosurface was clipped 
in order to reveal the bone isosurface.  On block of the skin was colored by process id to show the 
data partitioning. ParaView was run with 4 server processes in this example. This example also 
demonstrates ParaView's ability to process multi-block data sets. Many structured data sets divide 
the domain into blocks.  Each block is configured to get the best resolution sampling for its 
domain.  Since some data sets can have hundreds of blocks, it is important to group these blocks 
into a single entity that can be filtered in one step.  ParaView has group and ungroup filters, 
which simplify processing of multi-block datasets. 
 
Figure 7 shows streamlines generated by ParaView using a dataset of airflow around a delta wing.  
This example also shows the 3D line widget used to seed the streamline algorithm.  The 
streamline filter propagates integration across partition boundaries, and can execute in parallel. 
The delta wing and the contour surface were obtained by extracting sub-grids from the original 
curvilinear dataset. Since the actual dataset contains only half the wing due to symmetry, a 
reflection filter was applied to all surfaces. Both surfaces were colored by mapping the stagnation 
energy through a default lookup table. 
 
Figure 8 shows the results of a batch script on the results from the Parallel Ocean Program (POP). 
The 3600x2400x40 structured grid model the earth’s oceans at 1/10 of a degree resolution. 
Isosurfaces and extracted geometry are shown and are used to represent land masses. Also a clip 
plane colored by temperature at a depth of 1140 meters is shown. It is worth noting that climate-
specific visualization tools are unable to process datasets of this magnitude. 

Conclusions 
This paper presents the design of ParaView, an end-user tool for large data visualization. 
ParaView provides a graphic user interface for visualizing large datasets using techniques that 
include data parallelism, level-of-detail and streaming to meet its workflow and large data 
visualization requirements. In the future, there are number of directions to extend ParaView 
including the incorporation of data streaming into user interface and rendering support of 
extremely large datasets for tiled display walls. ParaView is an open source tool and members of 
visualization community are invited to add new features. 
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Figure 6: The Visible Woman dataset in ParaView 

  

 
 
 
 



 
Figure 7: The Delta Wing dataset in ParaView 



 
Figure 8: View of the Atlantic Ocean from a global 1/10th of a degree simulation showing ocean 
temperature at a depth of 1,140 meters generated by a ParaView batch script 
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